只用于動物實驗研究等 Batch information| Batch | Mw | Mn | PDI | Stock info |  | M501 | >50,000 |   | <3.0 | Out of Stock |  | M502 | 136,320 | 53,866 | 2.53 | In stock |  
 Ossila材料F8T2 CAS:210347-56-1General Information| CAS number | 210347-56-1 |  | Chemical formula | (C37H44S2)n |  | Molecular weight |  See batch information for details |  | HOMO / LUMO | HOMO = 5.5 eV / LUMO = 3.1 eV [1] |  | Synonyms | PFOT, Poly(9,9-dioctylfluorene-alt-bithiophene), Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene] |  | Classification / Family | Polyfluorenes, Bithiophenes, Heterocyclic five-membered ring, Organic semiconducting materials, PLED green emitter materials, Organic Photovoltaics, Polymer Solar Cells, Light-emitting Diodes, OFET materials |  | Suggested Solvents | Chloroform, chlorobenzene or dichlorobenzene |  
 Ossila材料F8T2 CAS:210347-56-1  Chemical Structure
 Chemical structure of Poly(9,9-dioctylfluorene-alt-bithiophene), F8T2, CAS No. 210347-56-1.
 Poly(9,9-dioctylfluorene-alt-bithiophene), also known as F8T2, is a semiconducting material that is widely used in organic electronics such as organic photovoltaics, polymer light-emitting diodes (PLED) and organic field-effect transistors (OFETs). Comparing with poly-3-hexylthiophene, F8T2 has even higher mobilities of 0.1 cm2/V · s and relatively higher stability against chemical doping by environmental oxygen or residual impurities such as   sulphonic acid in the PEDOT/PSS ink. This enables devices with higher on-off current ratios exceeding 105 and with better operating stability than printed poly-3-hexylthiophene devices[1]. The absorption in the blue region of F8T2 makes it an excellent donor polymer to blend with an acceptor having complementary spectrum or assemble a tandem cell with other low bandgap-conjugated polymers with absorption extended in the red region.  | Device structure                                            | ITO/PEDOT:PSS/TFB/F8T2/Ca  [3]                            |  | Color | Green    |  | Max. Luminance | 23,400 |  | Max. Current Efficiency | 3.68 cd/A |  | Max. Power Efficiency | 2.9 lm W−1   |  
   Literature and Reviews - Annealing effect of polymer bulk heterojunction solar cells based on polyfluorene and fullerene blend, J-H. Huang et al., Org. Electronics, 10, 27–33 (2009), doi:10.1016/j.orgel.2008.09.007.
 - High-Efficiency Polymer LEDs with Fast Response Times Fabricated via Selection of Electron-Injecting Conjugated Polyelectrolyte Backbone Structure, M. Suh et al., ACS Appl. Mater. Interfaces, (2015), DOI: 10.1021/acsami.5b07862.
 - On the use and influence of electron-blocking interlayers in polymer light-emitting diodes, R. Jin et al., Phys. Chem. Chem. Phys., 11, 3455-3462 (2009). DOI: 10.1039/B819200F.
 - High-Resolution Inkjet Printing of All-Polymer Transistor Circuits, H. Sirringhaus et al., Science, 290 (5499), 2123-2126 (2000), DOI: 10.1126/science.290.5499.2123.
 - Organic Light-Emitting Diodes Based on Poly(9,9-dioctylfluorene-co-bithiophene) (F8T2), P. Levermore et al., Adv. Funct. Mater., 19, 950–957 (2009); DOI: 10.1002/adfm.200801260.
 - Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase, H. Sirringhaus et al., Appl. Phys. Lett. 77, 406 (2000); http://dx.doi.org/10.1063/1.126991.
 - Annealing effect of polymer bulk heterojunction solar cells based on polyfluorene and fullerene blend, J-H. Huang et al., Org. Electronics, 10, 27–33 (2009), doi:10.1016/j.orgel.2008.09.007.
 - Hole mobility effect in the efficiency of bilayer heterojunction polymer/C60 photovoltaic cells, A. Macedo et al., Appl. Phys. Lett. 98, 253501 (2011); http://dx.doi.org/10.1063/1.3601476.
 
  |